Basic Algorithms

Since Statistiku has capability to weight the data, we will explain the algorithms in the form of weighted formulas. If you want to apply the formulas for unweighted data, you can set 1s as the weight.

GENERAL NOTATION
NotationDescription
`n`Total records (items)
`X_i`Value of `i`th item of `X`
`Y_i`Value of `i`th item of `Y`
`w_i`Weight of `i`th item
`N`Total of frequency
  • TOTAL OF FREQUENCY

    `N = \sum_{i=1}^n w_i`

  • SUM

    `\text{Sum of} \ X = \sum_{i=1}^n w_i X_i`

  • SUM SQUARE

    `\text{Sum square of} \ X = \sum_{i=1}^n w_i X_i^2`

  • MEAN

    `\barX = (\sum_{i=1}^n w_i X_i) / N`

  • GEOMETRIC MEAN

    `\barX_\text{geom} = \prod_{i=1}^n X_i^(w_i/N)`

  • SUM SQUARED TOTAL

    `\text{SST} = \sum_{i=1}^n w_i (X_i - \barX)^2`

  • VARIANCE

    Variance of sample:

    `\text{VAR} = \text{SST} / (N-1)`

    Variance of population:

    `\text{VAR}_p = \text{SST} / N`

  • STANDARD DEVIATION

    Standard Deviation of sample:

    `\text{SD} = \sqrt{\text{VAR}}`

    Standard Deviation of population:

    `\text{SD}_p = \sqrt{\text{VAR}_p}`

  • COVARIANCE

    Covariance of sample:

    `\text{COV} = {\sum_{i=1}^n w_i (X_i - \barX) (Y_i - \barY)} / {N-1}`

    Covariance of population:

    `\text{COV}_p = {\sum_{i=1}^n w_i (X_i - \barX) (Y_i - \barY)} / N`